

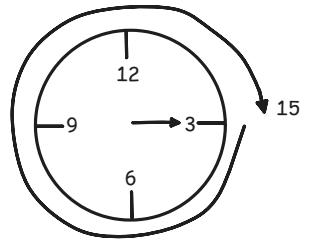
3 - Modular arithmetic

Clock points the same way at these hours:

$$-9 \equiv 3 \equiv 15 \equiv 27 \pmod{12}$$

Definition. For integers n, a, b with $n \neq 0$, we write

$$a \equiv b \pmod{n},$$



read "a is congruent to b mod n", if n divides a-b or equivalently, $a \div n$ and $b \div n$ give the same remainder.

Example 1. $17 \equiv 5 \pmod{3}$ because $17-5 = 12 = 3 \times 4$ is a multiple of 3.

$15 \not\equiv 2 \pmod{3}$ because 3 does not divide $15-2 = 13$.

$$32 \equiv 21 \equiv 10 \equiv -1 \equiv -12 \equiv -23 \pmod{11}$$

Example 2. All even numbers are $\equiv 0 \pmod{2}$

All odd numbers are $\equiv 1 \pmod{2}$

Example 3. My birthday is Tuesday in 2026 and ??? in 2027.

Answer. Say Sunday = 0, Monday = 1, ..., Saturday = 6. Then:

$$\text{Tuesday} + 365 = 2 + 365 = 367 = \underbrace{350 + 14}_{\text{divisible by 7}} + 3 \equiv 3 \pmod{7} = \text{Wednesday.}$$

(in 2026) (in 2027)

Theorem. $\left\{ \begin{array}{l} x \equiv a \pmod{n} \\ y \equiv b \pmod{n} \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x+y \equiv a+b \pmod{n} \\ xy \equiv ab \pmod{n} \end{array} \right.$

Why? Know a and b are the remainders of some division of $x \div n$ and $y \div n$:

$$x = j \cdot n + a$$

$$y = k \cdot n + b$$

Add these two equations. We get:

$$x+y = (j+k) \cdot n + \underbrace{(a+b)}_{\substack{\text{quotient of } (x+y) \div n \\ \text{remainder of } (x+y) \div n}}$$

So $x+y \equiv a+b \pmod{n}$. Similar computation shows $xy \equiv ab \pmod{n}$.

Example 4. Find the remainder of $N \div M$ if:

$$(a) M = 11, N = 10^2 + 111 \times 12 \equiv (-1)^2 + 1 \times 1 = 2 \pmod{11}$$

$$(b) M = 3, N = 1234$$

$$(c) M = 11, N = 1234$$

$$\begin{aligned} \text{Answer (b): } 1234 &= 1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10 + 4 \\ &\equiv 1 \cdot (1)^3 + 2 \cdot (1)^2 + 3 \cdot (1) + 4 \pmod{3} \\ &\equiv 1 + 2 + 3 + 4 \equiv 10 \equiv 1 \pmod{3}. \end{aligned}$$

$$\begin{aligned} \text{Answer (c): } 1234 &= 1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10 + 4 \\ &\equiv 1 \cdot (-1)^3 + 2 \cdot (-1)^2 + 3 \cdot (-1) + 4 \pmod{11} \\ &\equiv 1 - 2 - 3 + 4 \equiv 2 \pmod{11}. \end{aligned}$$

Divisibility Rules.

- $N \div 3$ has remainder \equiv the sum of the digits of $N \pmod{3}$.
- $N \div 9$ has remainder \equiv the sum of the digits of $N \pmod{9}$.
- $N \div 11$ has remainder \equiv the reversed alternating sum of the digits of $N \pmod{11}$.

In-class exercises. Without a calculator, find the remainder of $N \div M$ if:

1. (a) $N = 24680, M = 11 \dots 24680 \equiv 2-4+6-8+0 \equiv -4 \equiv 7 \pmod{11}$
(b) $N = 35 \times 16 + 180, M = 17 \dots 35 \times 16 + 180 \equiv 1 \times (-1) + 10 \equiv 9 \pmod{17}$
(c) $N = 6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1, M = 7 \dots 6 \cdot (-1) \cdot (-2) \cdot (3 \cdot 2) \equiv 6 \cdot 2 \cdot 6 \equiv (-1) \cdot 2 \cdot (-1) \equiv 2 \pmod{7}$
(d) $N = 123456789, M = 101$
(e) $N = 111111_2$ (binary), $M = 3$
2. Find $\gcd(123456, 33)$ by hand.

Application: error correcting code.

UPC (Universal product code) is a 12-digit code, the last digit is a check digit that checks if the cashier typed the previous digits correctly. The digits satisfy the congruence relation:

$$x_1 + x_3 + x_5 + x_7 + x_9 + x_{11} \equiv 3(x_2 + x_4 + x_6 + x_8 + x_{10} + x_{12}) \pmod{10}$$

Example 5. Check the bar code shown above is valid:

$$0 + 6 + 0 + 2 + 1 + 5 \stackrel{?}{\equiv} 3(3 + 0 + 0 + 9 + 4 + 2) \pmod{10}$$
$$14 \stackrel{?}{\equiv} 3(18) \pmod{10} \Rightarrow \text{Yes.}$$

Example 6. Find the missing last digit of the UPC code (right).

$$0 + 7 + 0 + 0 + 0 + 1 \equiv 3(3 + 0 + 0 + 0 + 0 + x_{12}) \pmod{10}$$
$$8 \equiv 9 + 3x_{12} \pmod{10}$$
$$-1 \equiv 3x_{12} \pmod{10} \Rightarrow x_{12} = 3$$

Example 7. Is 1234567 a square number? What about 2615441?

Square numbers end in digits 0, 1, 4, 5, 6, 9 only so 1234567 is not a square. Checking units digit is the same as computing $\pmod{10}$. To see 2615441 is not a square, work $\pmod{3}$: $n^2 \pmod{3}$ can only be $0^2 \equiv 0 \pmod{3}$, $1^2 \equiv 1 \pmod{3}$, or $2^2 \equiv 1 \pmod{3}$ but $1234567 \equiv 1+2+3+4+5+6+7 \equiv 2 \pmod{3}$ so 2615441 is not a square.